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ABSTRACT
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The Dirichlet problem in a bounded reéion for elliptic systems, of the

form

(*) , _ -Au = f(x,u) - v, ~Av = §u - yv

is studied:\‘FOt the questicn of existence of positive.aolutions the key
ingredient is a maximum principle for a linear elliptic system associated
with (*). A priori bounds for the solutions of (*) are proved under various

types of growth conditions on f. Variational methods are used to establish

the existence of pairs of solutions for (*).
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SIGNIFICANCE AND EXPLANATION

The Dirichlet problem for the semilinear elliptic system
(") -Au = f(x,u) - v, ~Av=68u-yv in @,
where @ is a bounded smooth domain in RV, is studied. Here & and Y
denote positive constants. The solutions (u,v) of (¥) represent steady
state solutions of reaction diffusion systems of relevance in Biology. The
authors consider general classes of nonlinearities £, which are modelled
in examples that often appear in the applications. Namely (i) f behaving
like Au - u3 where )2 > 0 is some real parameter, and (ii) f£(u) =

u(u - a)(1 - u), where 0 < a < 1 1is some given real number. A priori

bounds for the solutions of (*) are established under various types of growth

conditions on f. Then variational methods are used to prove existence of
solutions. The linear elliptic system associated with (*) does not fall in
the class for which there is a maximum principle available. However, the

authors show that in the case of (*) there exists a maximum principle under

suitable restrictions on the coefficients. This allows the use of the method

of monotone iteration and the establishment of the existence of positive

solutions in some cases of interest. Accession For
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A MAXIMUM PRINCIPLE FOR AN ELLIPTIC SYSTEM
AND APPLICATIONS TO SEMILINEAR PROBLEMS

Djairo G. de Figueiredo* and Pnzo Mitidierit*
! INTRODUCTION. In this paper we propose to discuss the elliptic system
(0.1) «Au = £{x,u) = v, =-Av=08u-Yv in Q,

where f is a bounded smooth domain in RN, N » 2, subject to Dirichlet boundary

conditions u=v =0 on 3Q. The solutions (u,v) of this problem represent steady
state solutions of reaction diffusion systems of interest in Biology. Namely systems of
the form
{0.2) u, = D1Au + £(u) - v, Ve = DzAv +e(u - vyv)
where Dys» Dy, € and Y are positive constants, and one looks for solutions u(t,x),
v(t,x) defined in (0,») x @, subject to Dirichlet boundary conditions on (0,») x 3.
The type of nonlinearities which are of importance in the applications will be described in
the examples I and II below. System (0.2) shows that both species may diffuse. 1In this
sense it is an extension of the well known FitzHugh Nagumo system, which serves as a model
N for nerve conduction, cf. (5] or Hastings (7]. We also mention Koga-Kuramoto {10], where
the complete system (0.2) appears and steady state solutions are discussed. There is an
extensive bibliography in this subject. We mention three additional papers, which are more
closely related to the investigation presented here, namely Rothe~de Mottoni [13], Rothe
{14] and Lazer-McKenna (11].

In the applications the constants Y and §, which appear in system (0.1), are taken
to be positive. So we shall make this assumption throughout this paper. It follows then
that the second equation in (0.1) can be solved for v in terms of u. Let us denote by
B 1its solution operator under Dirichlet boundary conditions. That is, given u we

define Bu as the gsolution of the problem =-Av + Yyv = 8u in Q, v=0 on 3Q. Thus our

*Departamento de Matemlitica, Universidade de Brasflia, Brasflia, Brazil

{Regsearch partially done at the Scuola Internazionale Superiore di Studi Avanzati in
Trieste, when the first author held a Guggenheim Fellowship).
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problem becomes the one of finding u such that

(0.3) -Au + Bu = f(x,u) in R, u=0 on 3N .

We observe that the left side of (0.3) contains a local (differential) operator -4, and a
nonlocal (integral) operator B. This fact gives rising to quite interesting gquestions.

It is essential at the outset to understand the operator =-A + B. In Section 1 we study
its spectral properties and establish a maximum principle for solutions of linear equations
like

(0.4) ~Au + Bu - Au=g(x) in Q, u=0 on 39,

where the real parameter ) is restricted to certain ranges depending on Y, § and the
region fl. In Section 2 we establish a priori bounds for solutions of (0.3) under the main
assumption that the nonlinearity f at ® is below the smallest eigenvalue of the
operator =A + B; this assumption will be stated precisely as condition (£2) and it
characterizes a class of systems which are here called sublinear. The two examples below,
which were treated by previous authors (9], (11], [13] and [14), are included in the
classes studied in the present paper. Their results are therefore sharpened as far as
ranges of the parameters involved and signs of the solutions.

Example I. f(u) = lu - g(u), where X is a real parameter larger than the first
eigenvalue of the operator =-A + B, and g 1is a function behaving like ua, but not
necessarily odd. Cf. [11], [13], [14].

Fxample II. f(u) = u{u -~ a)(1 - u), where a is such that 0 < a < 1/2. This is the
sort of nonlinearity arising in the FitzHugh-Nagumo equations, (5], [9].

The a priori bounds obtained in Section 2 will be needed in an essential way to
perform appropriate truncations of the nonlinearity £, so the problem could be treated by
variational methods. This will be done in Section 5.

In Section 3 we discuss a class of systems whose model nonlinearity is the one given
by Example I. Using the results of Section ! we are able to establish the existence of a
positive and a negative solution. This result complements a previous one by Lazer and

McKenna [11], who proved the existence of two nontrivial solutions by topological degree
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arquments. Their method however does not yield the signs of the solutions obtained. The
maximum principle for equations like (0.4) comes very useful in this respect.
In Section 4 we sketch a result on the existence of positive solutions for a

superlinear elliptic system. Results similar to the ones known for the scalar case hold

true in view of the aforementioned maximum principle.

The guestion of the a priori bounds

for positive solutions of superlinear elliptic systems may be a hard one.

If the growth of

the nonlinearity at += ig at most like

of Brézis-Turner (2] extend readily.

The range

[N+ 1)/(N =~ 1),(N+2)/(N - 2))

(N + 1)/(N = 1), for N> 3, then the results

poses

serious difficulties. The methods used in de Figueiredo-Lions-Nussbaum [3] to treat the
scalar case rely on the results of Gidas-Ni-Nirenberg [6], which are not available as yet
for the type of systems studied here. We remark that Troy ([15] has extended some of the
results in (6] to systems. However Troy's systems do not include the ones we are concerned
with. Also in Section 4 we prove a nonexistence result basing it on our extension to
systems of the well known Pohozaev's identity.

In Section 5 we consider a class of systems whose model nonlinearity is the one given
in Example II. Using the Mountain Pass Theorem of Ambrosetti-Rabinowitz (1] we establish
Theorem 5.1 on the existence of two nontrivial solutions for such systems, extending a
previous result of Klaagen-Mitidieri [9]. This result shows clearly the relevance of the
volume of § and of the parameters Y and § on the existence questions. It also
exhibits the importance of a large positive parameter ) on the existence of two positive
solutions for the system

-Au = Af(x,u) ~v =Av =8u -yv, in Q
subject to Dirichlet boundary conditions, and the nonlinearity ¢ is of the type given by
Example II. This relates to the scalar case studied in Rabinowitz [12].
The contents of this paper is as follows:
1. The operator =-A + B
2. A priori bounds for solutions of sublinear elliptic systems
3. Existence of positive solutions

4. Remarks on a superlinear system

S. Existence of two nontrivial solutions for a class of sublinear systems

-3~




1. THE OPERATOR -~A + B. Consider the linear Dirichlet problem
(1.1) “Av + Yv = §u in @, vs=0 on 30,
where Q CR' is a bounded and smooth domain, Y and § are positive constants. Let us
denote by B its solution operator: v = Bu. It is well known that

8222 w20 wl@y e P » v Py B Bl » A
Let us define the operator

1=-8+8: 2@+ t2@, wen om = #i@) AEY@) .

Clearly T is symmetric, that is, (Tu1,u2) = (u1,Tu2) for all uqu, € D(T), where
{,) denotes the 12 inner-product. Using the 12 regularity theory one can prove that
T is a closed operator. Let us denote by 0 < A1 < x2 < 13 € ... the eigenvalues of -4
under Dirichlet boundary conditions,and by ’k the corresponding eigenfunctions. Then it
is easily verified that
(1.2) ik'*k*y‘?"ﬁ' k=1,2,...
are eigenvalues of T, Moreover the same ¢k'l defined above are their corresponding
eigenfunctions. Since (Ok) is a coﬁplete orthonormal set in Lz, it is readily shown
that the ik'l are the only eigenvalues of T. We shall prove in the sequel that in fact
the spectrum O(T) of T consists precisely of these eigenvalues. PFor each X in the

resolvent set o(T) of T, 1let us denote by Tx = (T - )\I)”1 its corresponding resolvent

operator.

LEMMA 1.1. (A representation formula of the resolvent operator for some values of \).

Suppose that the real numbers a and b satisfy the following conditions

(1.3) a> - x,, Y+b> -A1, b* 0, and

(1.4) by + § = ab ,

Then A = -a - b is in the resolvent get p(T) and

(1.5) T, =N -by+b -8 1@-n"",

-4~
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Proof. With A = -a - b, one can write
Toar=(a-8) ¢ EEL L 4fy -7
Using condition (1.4) above one obtains
T~A=(a~MM1+bly-8)"1=(a-a)y-0""y+n-a).
Finally using condition (1.3) it follows that

1

Yy - &2 -7,

'rx-(yo-b-A)

which readily gives (1.5). O

Remark 1.1. A calculation shows that X\, taken in the ranges indicated below, are
representable as A = -a - b, with a and b satisfying (1.3) and (1.4):
(1) Al X< -y ~ 2/8. fThese \'s correspond to b > 0.

(14) If Y + A1 > /6-, there are some additional values of A. Namely

2/% - y<X« X1 + -Y—f_r. These A's correspond to b negative in the range
1
[}
-x‘-y<b<-7+x.

1

Remark 1.2. (Monotonicity of the sequence Xk). We observe that Yy + X, > /8 implies
that A g ¢ 12 €)A, € ... . Of course one does not have in general such a monotonicity of

3
the eigenvalues Ak' Clearly Y + 11 > /8 is not a necessary condition, since it in fact

implies the stronger statement that the function 8 +=> 8 + is monotonically

Y+ s

increasing in the whole halfline [X1,.). A necessary and sufficient condition for this

monotonicity involves also the second eigenvalue \2, namely § < (Y + 11)(Y + 12)-

Corollary 1.2. (Compactness of T,). For all X € p{(T), the resolvent operator T is
A —— A ==

compact .

Proof. Por any A,u @ o(T) one has the resolvent equation
T, T " (u - X)'l'“'l'x .
So 1if T is compact for some ), then it is compact for all A's in the resolvent

set. By the previous lemma TX is compact for )\ € ~y = 2/%. 0

.




The following result is an immediate consequence of Lemma 1.1 and Remark 1.1 above. |

Corollary 1.3. (Positiveness of T, for some values of ). If Y + X1 > /8§, then T

A
is positive for all 2/5 - Yy €)X < 11.

Remark 1.3. The positiveness of Tk is a maximum principle for the equation

-y + Bv = Av=u in Q, v=0 on 3N .

It says that if u e Lz and u » 0 a.e., then v > 0 a.e. In fact, it follows from the

representation formula (1.5) that a strong maximum principle holds. Namely, if u € c°(n)

and u >0 in 2, then v >0 in @ and the outward normal derivative %5 < 0. [Recall

that 2 is being assumed to be smooth. So the interior sphere condition is satisfied]. y

Remark 1.4. If Y > 2/3, then the condition Yy + X, > /% is automatically satisfied, and
Corollary 1.3 says that in this case T& is positive for ) in an interval which
contains 0. 1In general one cannot expect that To be positive. Indeed, if Y =6 =1,

then Corollary 1.3 says that TX is positive for 1 <€ X < A‘.

Proposition 1.4. The spectrum O(T) of T congists of precisely the eigenvalues Xk'

Proof. We have seen above that the point spectrum PG(T) = {;k t k=1,2,,..}. Let
A ¢ PG(T). Themn T - AI is one-to-one. If we show that T - AI is onto, it follows by
the Closed Graph Theorem that X € p(T). Thus we claim that equation Tu - Au = v has a ?
solution u for each given v € L2, Taking u € p(T) we see that this equation is
equivalent to Tu - yu = (A - y)u + v, or
(1.6) u= (- u)Tuu + Tuv .

By Fredholm alternative (1.6) is solvable iff the homogeneous equation u = (A = u)Tuu has

i only the solution u = 0. But this is actually the case, since this homogeneous equation

is equivalent to Tu = Au. Recall that ) ¢ Po(T). (m

-6~




Remark 1.5. The above proposition follows also from general results in Punctional

Analysis. Namely, T being a self-adjoint operator it follows that its residual spectrum
RO(T) 4is empty. Next, since -4 - X is Predholm for every ) € C, it follows that
-A + B - ) is also Fredholm for all A € C. Consequently the continuous spectrum C3(T)

is also empty.

Remark 1.6. (An useful inequality). Let X denote the smallest of the eigenvalues Xk-

We have seen above that i = X, if v+, V8. We assert that

(1.7) (Tu,u) > Ylulz2 ., vuen .
L

Indeed, since (¢k) is a complete orthonormal set in Lz, we can write u = 2 akok where
Gk - (u:"k)- So
2&
{Tu,u) = ) a (Tusd,) = ) a, (u,T9,) = ) aky

from which the claim follows. A similar argument shows that

1

(1.8) J 1l e muw > Tiw?,, vuen) .

0
L2

Remark 1.7, (Uncouglinq of systems and maximum principles). The usual maximum principle

for systemsg, as well as the maximum principle proved here, seems to be related with the
possibility of uncoupling the elliptic aystem. To make precise our observation, let us
look at the linear elliptic system
(1.9) =8u = au + bv + f(x)

-Ay = cu + dv + g(x)
subject to Dirichlet boundary conditions: u = v = 0 on 23, where I is some hounded
domain in R", and a,b,c and A are real constants. Suppose that b * 0 and c # 0,
otherwise the prohlem trivializes. The uncoupling of system (1.9) is possible if the
matrix of the coefficients

Cl

has two distinct eigenvalues, u, and LPY Such a condition is equivalent to

(1.10) (a~8)2 +4apc>0.

7=




Of course this is the case if b and ¢ both have the same sign. However to infer the
signs of u and v from the signs of the corresponding functions in the unccoupled system
one needs that both b and ¢ be positive. This gives the usual maximum principle for
syastemg. On the other hand if b and ¢ have opposite signs the uncoupling is still
poasible provided a and 4 “compensate™ for the negativeness of bc. Through some
caiculations one can prove the following result, which essentially gives our maximum

principle.

Proposition 1.5 1In addition to (1.10) assume that be < 0, c(a ~ d) > 0, Y, < X’ and

uz < A1. Then if £ 2 0, g >0 and cf »> (a - u1)g, it follows that the solutions

and v of (1.9) are poaitive in .

2. A PRIORI BOUNDS FOR SOLUTIONS OF SUBLINEAR ELLIPTIC SYSTEMS.

Let us consider the elliptic system
(2.1) ~Au = f{x,u) - v, =~Av=8u-yv in Q ,
where {1 is a bounded smooth domain in RN, subject to Dirichlet boundary conditions. We

always assume that Y and & are positive constants. The nonlinearity £ is subject to

the following conditions.
(£1) £ ¢ GxR+*R is locally Lipschitzian,
(£2) lim sup SLEL!l < X (uniformly in ), where by denotes the smallest
s
eigenvalue ot'the operator ~A + B studied in Section 1. Condition (£f2) characterizes
system (2.1) as being sublinear.

1

Examples. 1) f£(u) = lu ~ h(u)u, where h is a C' function such that h(0) = 0,

h'(s)s >0 for all s # 0 and 1lim inf h(s) > A, (for instance h(s) = 92). This is the
[ 2 ]
case considered in (11]) ana [14].

2) f(u) = u(u - a)(1 - u), where 0 < a < 1. This is the type of nonlinearity that

appears in the PitzHugh-~-Nagumo equations. Cf. (5], (9].

~8-




Remark 2.1. By a solution of (2.1) we mean a classical solution. That is, a pair of
functions (u,v) which are in Cz(ﬂ) Al Co(ﬁ) and which are 0 on 3fl. We observe that
if u,ve H;(Q) n ¢l satisfy (2.1) in the distribution sense, then by a bootstrap
argument it follows that u,v € cz'a(ﬁ). We remark that in general one cannot drop the
hypothesis that u and v are in Cc(ﬁ) in order to be able to bootstrap. However, this
would be possible provided one assumes some growth condition on f.

In order to obtain the a priori bound for the solutions of (2.1) we shall assume

either one of the conditions below.

(£3) llr‘ -f;"—i;’-o, where 1<p<NT2 if N>3, and 1<pcs, if N=2
-2 ot a8

(£4) 1Tn|-up-ﬂfl'—’<-$,
5 |v®

where the limits are uniform in Q.

Remark 2.2. In the scalar case (i.e. <-Au = f(x,u)) condition (f4) corresponds to

f(x,8) <0 for s >8>0 and f(x,s) >0 for 8 < -8, where B is some real number.

Proposition 2.1. Under hypotheses (f1), (f2) and (£3), the solutions of (2.1) are a priori

bounded in L.

Proof. It follows from (f2) that there exist 0 < u < X and M 0 such that

(2.2) f{x,8) < uys + M, for 0 < g < »; f£(x,8) »ps =M for - < g <0 .

The second equation in (2.1) can be solved for v 4in terms of u. And in this way

system (2.1) is equivalent to the equation

(2.3) ~8u + Bu = f(x,u) ,

using the notation of Section 1. So we need only to prove bounds on u. The corresponding
bounds on v are obtained immedjiately from the second equation in (2.1). Multiplying (2.3)
by u, integrating by parts and using (1.8) we obtain

(2.4) X fu?<f tvul? + [ (Buu = | £(x,ulu

Next we estimate the last term in (2.4) using (2.2)

(2.5) [ fixmu < u [fudemf lul

-9-




which implies ] u2 € C. (We shall use the same C to denote different constants).
Using (2.4) and (2.5) again and recalling that B is a bounded linear operator in Lz, we
conclude that ] anlz € C. It follows from (f3) that given € > 0 there exists cc >0
such that
{e(x,8)| < €|s|P + < -
Finally using this inequality and invoking 1P estimates and the Sobolev imbedding
theoren, we conclude that there exist a constant E such that 1ful - < E. O
L

Remark 2.3. We emphasize that the dependence of é on f is through the constants

M, M and Ce+ So if we change £ for 'sl > é maintaining ¢, M and Ck, the new
equation (2.3) with this modified f has the same solutions of the original equation
(2.3). This fact will be used in Section 5.

The following result was proved by Rothe [14] and Lazer and McKenna (11]) under less

general hypotheses on f. The main idea in the proof helow is taken from those papers.

Proposition 2.2. Under hypotheses (f1), (f2) and (f4), the solutions of (2.1) are a priori

bounded in L .

Proof. (i) We first claim that for u € Co(ﬁ). with u =0 on 31, one has

(2.6) $~min u € (Bu){x) € % max u, xeq.
Indeed we know that v = Bu satisfies the equation
1 [
7 ve—AV & —nq
(2.7) Y Y

Let us prove the first inequality in (2.6). If v » 0 that inequality is trivially

true. So let us assume that for x4 € 2 we have v(xy) = min v < 0. Then Avix,) > 0
and (2.7) implies that vi{x,) ? % u(x1), from which the first inequality in (2.6) follows
readily. In a simjlar way we prove the second inequality in (2.6). ‘

(1i) It follows from (f4) that there exist positive constants k and m such that

(2.8) -f-‘—"-:ﬂ<-k<--$—, sl >m .

=10~
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We claim that ful _ < m for all solutions u of (2.1). Indeed, supposs by contradiction

L
that lul _ = M > m for some solution u. It follows from (2.6), using the first equation
L
in (2.1) that
8 §
(2.9) Y min u € Au + f£(x,u) € ;-nax u .

If there is xq € @ such that u(xo) = M we obtain from (2.9) and (2.8) that

- % M < t(xo,u(xo)) € ~ku(xy) = =kM ,

which is impossible. In a similar way we arrive to a contradiction if u(x) = -M for

some x € Q. D
Next we discuss the question of bounds for positive solutions of the system (2.1). As

remarked before we need only to obtain bounds on u, and then corresponding bounds on v

follow readily.

Proposition 2.3. In addition to (f1) assume the following condition

(£f5) there exists a constant m > 0 such that f(x,s) =0 for s > m.

Then all nonnegative solutions u of (2.3) are bounded above by m.

Proof. Given a solution u of (2.1) define the function w as w(x) = u(x) - m for
u(x) >m and w(x) = 0 for ul{x) < m. Such a w belongs to H;(ﬂ)- So it follows
from (2.3) that

(2.10) J ]Vu|2 + (Bu,w) = | fix,u)w .

In view of (£5) and the fact that (Bu)(x) > 0 for x € I, we conclude from (2.10) that

J 190)? = 0, which implies w = o. o

Remark 2.4. This proposition will be used as follows. Suppose that the function £ is
such that there is an m > 0 for which f(x,m) = 0. Then we consider system (2.1) with

f replaced by a new function ; defined as f for s<m and as 0 for s > m. If for
this new system we could find a nonnegative solution u, then by the proposition above

such a u would be indeed a solution of the original system.

-11-
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0 ¢ 8 <€, then either there is an m > 0 such that f(m) = 0 or ¢

Remark 2.6. Similar statements can be made for nonpositive solutions

Remark 2.5. Now if f(x,s) = f(s) satiefies (£2), f£(0) > 0 and f(s) > 0 for

satisfies (£3). 1In

the first case we treat the problem as in the previous remark. In the second case we

proceed as in Proposition 2.1 and obtain an a priori bound on positive solutions.

u.

Remark 2.7. A sufficient condition for all (eventual) nontrivial solutions of (2.1) to be

positive. Assume that Y + A1 > /¢ and that f(x,u) » au for all u,

where

-Y + 28 < a < X1. Then the nontrivial solutions u of (2.1) are positive in .

also by f the truncated function) provided §6/Y < a. So the previous

condition applies. Summarizing, the solutions of (2.1), in the case of

From (2.3) we obtain =8u + Bu ? au, and the result follows readily by Corollary 1.3.

Remark 2.8. The previous condition applied to Example 2 gives interesting conclusions.
Indeed, we can in this case compute explicitly the value of m in (2.8). Then truncate
f outside Ial >m in such a way that the new f has derivative equals to =-a for

|s| > m. By Proposition 2.2 the solutions of (2.1) with this new f are the same as the
solutions of the original equation. Moreover, from the way the truncation is done, it

follows (by a straightforward calculation) that now f{u) » -au, (where we are denoting

sufficient

Example 2, are

positive if
P —
(2.11) y<® <y ~2/8
Observe that, if (2.11) is assumed, then the condition Y + k, > V8§ is

satisfied, cf. Remark 1.4. We remark that no solution of (2.3) in this

-q2=

automatically

example can be

nonpositive (i.e. u € 0 in £). In fact the solutions in general change sign.
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3. EXISTENCE OF POSITIVE SOLUTIONS. We consider again system (2.1) of the previous

section or its equivalent expression in the form of equation (2.3). In this section we
examine the question of existence of a positive solution under an additional condition on
the nonlinearity £ at 0. 1In order to simplify the presentation in the sequel we suppose
that f does not depend on x. The case when f depends also on x can also be treated
by the method used here; under appropriate conditions on f similar results niy be
obtained. So we assume the condition next.

(£6) 1im inf -'-:—'-)- >

8+0 !

Examples. Condition (£6) is satisfied, for instance, if (1) £(0) > 0, or (ii) f£(s)

is ¢! ana £2(0) > X1- A special case of (i1i) was considered in [11].

Theorem 3.1. Assume that Y + X1 > ¥§. In addition to conditions (£f1), (£2) and (£6),

suppose that f is ¢! for s >0 and
(3.1) inf{f'(s) + 0 < 8 ¢ B} » ~y + 2/6 ,

where B € +» ig the first positive zero of f(s). Then equation (2.3) has a positive

solution u, or equivalently, system (2.1) has a pair (u,v) of positive solutions.

Remark 3.1 The hypothesis Y + X1 > /§ in Theorem 3.1 implies that 3= A1. Recall also
that under this hypothesis =y + 2/8 < A 4+ and so we can make use of Corollary 1.3. The
condition on the differentiability of f can be relaxed and in consequence (3.1) has to be

replaced by an appropriate one-sided Lipschitz condition.

Proof of Theorem 3.3. (i) It follows from (£6) that there exist Vv > A, and s > 0

such that f(s) > vs for 0 < s € sy, Thus c01 is a subsolution of (2.3) for all ¢
such that 0 ¢ € < €y = 8, /max 4,

(11) 1f B <» then uw(x) =8 4in O 1is a supersolution of (2.3). If B8 = 4 we
construct a supersolution « for (2.3) as follows. It follows from (f£2) that there exist

-y + oF ¢ u < X’ and C > 0 such that f(s) € uys + C. We then take «w as the solution

-13=
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of -4w + Bweuw +C in fi, w =0 on 3Q. In view of Corollary 1.3 w >0 4in § and

€ > 0 can be chosen in such a way that co’ <w in Q.
(1i1) So (2.3) possesses an ordered pair of a sub- and a supersolution. Now
in order to apply the method of monotone iteration, it is still required that

(a) TX w (-4 + B - XI)-1 be a positive operator for some real number A, and (b)

-~
the function s --> f(s) - As, for the same ), be nondecreasing in the interval

[0, max w)}. These two requirements are accomplished if one chooses ) = -y + 8.
Indeed, (a) then follows by Corollary 1.3 and (b) follows from (3.1). Therefore the method

of monotone iteration can be applied and one obtains a solution of (2.3) in the interval

[co,,u! .
Remark 3.2. It should be remarked that besides (f2) no growth condition is required on f.

Remark 3.3. A statement similar to Theorem 3.1! holde true for the existence of negative
solutions of (2.1). In this case, condition (3.1) is replaced by

(3.1° Anf{f'(8) + B' < 8 € 0} > -y + 2/8

where == < B' ¢ 0 4is the first negative zero of f(s). In order to prove such a result

we can reduce it to the situation of Theorem 3.1 by the substitution £ = -u,

Example. f(u) = au - ul with a > 0. 1In this case B = /a, and

min{f'(s) : 0 € u ¢ B} = -2a. Bo conditions (£6) and (3.1) are satisfied if

-

X1 < a<ys2 -7/8. We then see that in this example there are values of a for
which (2.3) has a positive solution provided

-

(3.2) Ay <v2 =48

Clearly this is the case for instance if vy is large. This is also the case if

Y>> Y3+ 1)/8 ana 9 is a sufficiently large ball. 1Indeed, for large balls X1 is
essentially zero and this last inequality implies readily condition (3.2). Clearly in this

example there is also a negative solution, namely =-u, wvhere u is the positive solution.
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Comparison with the results of lazer-McKenna. In [11] the following system is studied
(3.3) ~k&u = Au = h{u)u - v, ~Av + v=u in Q

subject to Dirichlet boundary conditions. Under certain conditions on k, A and h it is
proved that

(3.4) -kdu + (1 = )7y = 2w - B(wu ,

which is an equivalent form of (3.)), has exactly three solutions. In [11] a topological
degree argument is used, which does not give the sign of the two nontrivial solutions.
Under essentially the same hypotheses, our Theorem 3.1 says that one of these solutions is
positive and the other is negative. Our precise result is the following. We state only
the one corresponding to the existence of a positive solution. A similar one can be drawn

for the existance of a negative solution.

Corollary 3.2. Under the ass ions below tion (3.4) has a positive solution:
(3.5) TR WV

(3.6) hec rR), h(O) =0, h'is)s >0, vaso.

(3.7) XA, + ‘_1_‘_‘ <A

{3.8) sup{n'(s)s + his) : 0< s < B} €A +k - 2k ,

where B is the only positive solution of h(s) = A. (Observe that # could be =),

Remark 3.4. If h'(s) 1is nondecreasing then B <o and (3.8) simplifies to

8h*(B) ¢ k - 2/x. so positive solutions of (3.4) exist if the diffusion rate k is

1"’!0
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4. REMARKS ON A SUPERLINEAR SYSTEM. Consider the elliptic system

(4.1) =Au = f(u) - v, -4y = §u - yv in 0,

subject to Dirichlet boundary conditions, with v,§ > 0 and =y + 2/8 < 0. Assume the

following conditions on the nonlinearity f

]
-
3
(1) £ s RY » st locally Lipschitzian, j;‘
(£7)  1im ing 282 5 3 |
erim 8 1 i
~ '
(£8) 1lim sup 2s) . A1
0 °

(£9) 1tm £LBl oo yhere 1<o<(N+N/N-1), if N>3 and 1<¢T <=,

s+i® g

if N = 2,

As seen in the previous section, (4.1) is equivalent to
(4.2) -Au + Bu = f(u) .
Under the hypotheses above we may proceed as in the scalar ease {cf. Brézis-Turner [2]) and
we prove that (4.2) has a positive solution. Condition (£9) is used to get a priori bounds
for the positive solutions of (4.2). We do not know how to proceed in order to obtain such
bounds in the case when (N + 1)/(N~ 1) <6 < (N + 2)/(N~2) and N > 3. The results of
{3] for the scalar ease are not immediately extended to this case. For that purpose, the
first step would be to see how the results of Gidas-Ni-Nirenberg (6] look (if at alll) in

this case. We remark that the extension obtained by Troy [15] does not cover the type of

systems studied in this paper.

Remark 4.1. The condition =~y + 28 <o is used in order to gquarantee that the operator
To 2 (=A + E)-1 is positive. 1If this condition is not satisfied, but one has
Y + x, > IE, everything still works provided X1 in the right sides of assumptions (£7)

and (£8) is replaced by A, ~ 7Y + /8.

Nonexistence of positive solutions in the case when f£(u) = uP, for p > (N + 2}/(N - 2)

and N > 3. As in the scalar case this is proved using an identity of the Pohozaev type.

-6~
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The function f(u) = P for u > 0 is extended as f(u) = 0 for u < 0. Then it follows
from Remark 2.7 that all eventual solutions u and v of (4.1) are positive in 0,
provided we assume that =Y + 2/8 ¢ o. Consequently the nonexistence of nontrivial
solutions for system (4.1) (in star-shaped domains 1) with such an f follows readily

from the two lemmas below.

Lemma 4.1. lLet u and v be solutions of (4.1). Then the following identity holds

(4.3) 20 [ P - (8= 2) [ue(w) -2 [ w -2 [ |90|? o ¢ (xe0)[|70)? - 3 Iwv|?)

L]
where P(s) = [ £ and [ denotes (volume) inteqral over 0 and ¢ (surface) integral
0

over 3fl. Here VvV denotes the outward unit normal.

lewma 4.2. let u and v be solutions of (4.1). Assume that -y + 2V < 0. Then

u- (1/8)v is positive in f and
du 1 9dv
_— __ — <0 on aﬂ .
3 /8 v —_—

To conclude this section we prove the two lemmas above.

Proof of lemma 4.1. First we use the general form of Pohozaev's identity for solutions of

the -Au=g(x,u) in @ and u =0 on 23; see [3]. This identity will be applied
separately to the first and second equations in (4.1). Observe that for the first
equation, g(x,s) = f£(s) ~ v(x), and for the second equation, g(x,s) = Su(x) - ys. Then
we obtain the following two identities

(4.4) 28 [ [P(u) = uv) = 2 [ (x9vhu = (N = 2) | [f(u) = vlu = § (xov)|Vu|?

(4.5) 20 [ [8uv - 2 ¥w?] + 28 | (xVu)v - (N = 2) [ [Su - Yviv = § (xev) [7v|?

(If one prefers to ignore [3], identities (4.4) and (4.5) may bhe obtained in the standard
way Pohozaev's identities are proved. Use the multiplier x+Vu in the first equation of

(4.1) and x+*Vv in the second). It followa from the divergence theorem that

-17=
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(4.6) J (x%viu + [ (xeVu)v = =N | uv
Next dividing (4.5) through by &, subtracting the result from (4.4) and using (4.6) we
obtain

(4.7 2 [rw) - (8 -2) fute) - 4] w+ [P g xenrilval? -3 %
Now it followas from the second equation in (4.1) that
(4.8) J]Vvlz-ﬁjuv-Y]vz.

Taking (4.8) into (4.7) we obtain the identity (4.3). o

Proof of lemma 4.2. It follows from -Y + 2/8 < 0 that there eixsts a real number k

such that V8 < k < Y - V6. Using (4.1) it is easy to check that
1
(-4 +xM{u-—w)>20 in @
"1

from which the assertion of the lemma follows. Observe that we know that all (eventual)

solutions of (4.1) would be positive. [m]

S. EXISTENCE OF TWO NONTRIVIAL SOLUTIONS FOR A CLASS OF SUBLINEAR SYSTEMS. Let us

once more consider system (2.1) under conditions (f£1), (£2), (£3) or (£4). As in
previous sections we discuss, instead of system (2.1), its equivalent form given by
equation (2.3). 1In this section we propose to treat the question of existence of solutions

of (2.3) by a variational argument. S6 we look for the critical points of the functional

(5.1) o(u) = %] !Vulz +-.:,- (Bu,u) - [ F(x,u)

s
where PF(x,s) = f £f(x,E)AE. Although this functional is well defined in HS if we assume
(£3), this is no: the case if (f4) is assumed instead. Observe that both (£f2) and (f4)
restrict f only in one direction. So some truncation has to be done. The existence of a

priori bounds on the solutions of (2.3) in either case ((£3) or (f4) assumed), as proved in

Section 2, allows us to truncate the nonlinearity f in such a way that the functional ¢

-18=
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is well defined in "8 and it is bounded from below. Indeed, in case (£3) is assumed we

choose an appropriate E > C and do this truncation for ||| > E (see Proposition 2.1

and Remark 2.3) preserving u, M and ce and in such a way that lim fix8) | L

~ [a]se
where 0 < £ < A. In case we assume (f4) the truncation is done for |s| > m (see
Proposition 2.2}, and in such a way that lTa fix,8) ~k, where the constant k is
8 | v

given in (2.8). The truncation so done has the very essential feature that the new
equation (2.3) with this truncated function has the same solutions as the solutions of the
original equation (2.3).

1

It is immediate to see that ¢ : H;(ﬂ) + R is C' and

= [ YueV0 + [ (Bu)uw - [ £(x,u)u .

(5.2) (8 (u),w)
H

8o the critical points of ¢ are the Hg solutions of (2.3). By a bootstrap argument it

follows that these solutions are in fact in Cz’u(ﬁ).

Lemna 5.1. The functional ¢ defined above satisfies the Palais Smale condition.

Proof. (i) In view of Poincaré's inequality we may consider H; endowed with the inner

~ 1
product (u,w) , = J FueVu. It is well known that the nonlinear operator f : Hy * H‘
H

0
defined by (f(u),w) " | £(x,u)e, vVwe H;. is compact. (Recall that £ has linear
H
growth in view of the truncation). On the other hand the (linear) operator B : H; +* H;

defined by (;u,w) - ] (Bu)w is also compact. This follows readily from the compact

1
H
imbedding of Hy in L?. Consequently &' = I +B - f, that 1s, #' is of the form

identity + compact operator. Thus to prove the Palais Smale condition it is enough to show

that any sequence (u, € H& such that IO(un)| < C and 0'(un) + 0 in “8 possesses a

subsequence (denoted again by wu,) such that lunl 1 < C.
H
(i1) It follows from 0'(un) + 0 that given € + 0 there exists a subsequence of
{u,) (denoted again by u,) such that

(5.3) [/ Vo %6 + [ (Bu do = [ £lx,u o] < enlwlH1 .
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Now using (5.3) with 0 = u, and estimating with the help of (1.8) we get
(5.4) Y ) Jul® <) txudu + e tud

* n #Un % n n H1
From the properties of the truncated f we obtain from (5.4)
(5.5) Jul<cece tut

* n n n 1

H
Next from IO(un)l < C we infer that
2

(5.6) J IVunI < J (Bupu, + 2  |Rixu)| +c
and finally using the properties of the truncated f we ohtain from (5.6) and (5.5) that

2
] Pu I® ¢ c+cedut which proves that lu} , < c. o)

R H

Remark 5.1. It follows immediately from the previous remarks that system (2.1) has at

least one solution under hypotheses (£1), (£f2), and (£f3) or (f4). Indeed, since ¢ is

c‘ functional, bounded below and satisfying the Palais Smale condition, it follows that it
has a global minimum u,, 0(u1) = inf{#(u) : u e H;}- One cannot expect in general the
existence of more solutions. Indeed if £(u) = Au with X < :, eguation (2.3) in this
case has only the trivial solution! So some additional aassumption is necessary.

Now we treat a problem which is superlinear at 0, in the sense that the condition
below holds

(£10) £ is differentiable at 0, £(x,0) = 0, and f£'(x,0) < x.

Example 2 in Section 2 satisfies condition (£10).

Theorer 5.2. Assume conditiona (f1), (£2), (f3) or (f4), and (f10). In addition suppose

that there exists £ > 0 such that

(5.7) F(E) > F(s) vo<asc<E .,
2 N N
sy L, o pirefuseto1 s nsrol oo oy
E R t 2 - (1 +¢) 2~ (1+1¢)
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where R denotes the radius of the largest ball contained in . Then equation (2.3) has

at least two nontrivial solutions.

Remark 5.,2. Condition (5.8) is the analogue of a condition introduced by one of the
authors (D.G.F.) in [4) for the scalar case. We remark that if there is a £ > 0 such
that P(E) > 0 then condition is satisfied for example if Q 4is a large ball and § is
very small. The special case of Example 2 was studied by Xlaasen and Mitidieri (9].

Condition (5.8) follows readily from their conditions: (i) f to be a large ball, and

(1) I —2
8 2-2 - S5a + 2

Proof. It suffices to prove that there exists ue H1 such that ®(u) < 0. oOnce this is

0
done we see that the global minimum u, of ® is a nontrivial solution since

0(u1) = inf & < 0. The second solution is obtained immediately by_an application of the
Mountain Pass Theorem of Ambrosetti-Rabinowitz (1], since 0 is a strict local minimum in
view of assumption (£10). In order to see that there are points in “3 where the
functional ¢ is negative we consider the functions u, below. We may assume that the
ball centered at 0 with radius R is contained in i, where R is the radius of the

largest ball contained in Q. Defining
E, if Ixdh € R/(1 + ¢t)

11—‘R—<lxl<R

- 1+t - R
u, (x) E(1 = (4xt - o3 1, —

0, if x & D\B,(0)

the result follows by a calculation from conditions (5.7) and (5.8). 0

gy
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